Abstract

AbstractPorous polymer networks (PPNs) are promising candidates as photocatalysts for hydrogen production. Constructing a donor‐acceptor structure is known to be an effective approach for improving photocatalytic activity. However, the process of how a functional group of a monomer can ensure photoexcited charges transfer and improve the hydrogen evolution rate (HER) has not yet been studied on the molecular level. Herein, we design and synthesize two kinds of triazatruxene (TAT)‐based PPNs: TATR‐PPN with a hexyl (R) group and TAT‐PPN without the hexyl group, to understand the relationship between the presence of the functional group and charge transfer. The hexyl group on the TAT unit was found to ensure the transfer of photoexcited electrons from a donor unit to an acceptor unit and endowed the TATR‐PPN with stable hydrogen production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.