Abstract

This paper presents a simple flux regulation for a direct torque control (DTC) of an induction motor (IM) to improve speed and torque estimations at low- and zero-speed regions. To accomplish this, a constant switching frequency controller (CSFC) is used to replace the three-level hysteresis torque comparator of a DTC IM. The DTC of IM utilizing CSFC (DTC-CSFC) retains the simple structure of a lookup table-based DTC drive. With DTC-CSFC, constant switching frequency is maintained, and at the same, the flux droop problem that normally occurs in DTC with the hysteresis controller (DTC-HC) at low speed is solved; subsequently, the stator flux and torque estimations at low speed are also improved. In the proposed system, the speed feedback for the closed-loop speed control is estimated using an extended Kalman filter, which requires heavy real-time computation. However, due to the simple structure of DTC-CSFC, small sampling time, hence large control bandwidth is possible. The performances of the speed sensorless DTC-HC and DTC-CSFC are compared experimentally under different operating conditions. With the improved stator flux regulation, experimental results of the DTC-CSFC showed a significant improvement in speed and torque estimations at very low and zero-frequency operations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call