Abstract

We characterize a system of hard spheres with a simple collision rule that breaks time-reversal symmetry but conserves energy. The collisions lead to an achiral, isotropic, and homogeneous stationary state whose properties are determined in simulations and compared to an approximate theory originally developed for elastic hard spheres. In the nonequilibrium fluid state, velocities are correlated, a phenomenon known from other nonequilibrium stationary states. The correlations are long-ranged decaying like 1/r^{D} in D dimensions. Such correlations are expected on general grounds far from equilibrium and had previously been observed in driven or nonstationary systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call