Abstract

AbstractA distance field is a representation of the closest distance from a point to a given surface. Distance fields are widely used in applications ranging from computer vision, physics and computer graphics and have been the subject of research of many authors in the last decade. Most of the methods for computing distance fields are devoted to Cartesian grids while little attention has been paid to unstructured grids. Finite element methods are well known for their ability to deal with partial differential equations in unstructured grids. Therefore, we propose an extension of the fast marching method for computing a distance field in a finite element context employing the element interpolation to hold the Eikonal property (∥∇φ∥ = 1). A simple algorithm to develop the computations is also presented and its efficiency demonstrated through various unstructured grid examples. We observed that the presented algorithm has processing times proportional to the number of mesh nodes. Copyright © 2007 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.