Abstract

Nature-inspired superhydrophobic surfaces have received immense industrial and academic interest due to their non-wettability and self-cleaning properties. To fabricate superhydrophobic silicone rubber surfaces, a simple, environmentally friendly atmospheric-pressure plasma treatment was applied. The effect of diverse plasma processing parameters on the final wettability behavior of the substrates, including plasma power, plasma frequency, number of passes, plasma jet speed, plasma cycle time and distance between the nuzzle outlet and substrate, were analyzed by means of design of experiments (DoE). Surface chemical characterization illustrated the influence of plasma treatment on the chemical composition of the produced silicone rubber. Furthermore, the presence of microstructures as well as the chemical composition of the surface was confirmed using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.