Abstract

In randomized controlled trials, the intention-to-treat estimator provides an unbiased estimate of the causal effect of treatment assignment on the outcome. However, patients often want to know what the effect would be if they were to take the treatment as prescribed (the patient-oriented effect), and several researchers have suggested that the more relevant causal effect for this question is the complier average causal effect (CACE), also referred to as the local average treatment effect. Sophisticated approaches to estimating the CACE include Bayesian and frequentist methods for principal stratification, inverse-probability-of-treatment-weighted estimators, and instrumental-variable (IV) analysis. All of these approaches exploit information about adherence to assigned treatment to improve upon the intention-to-treat estimator, but they are rarely used in practice, probably because of their complexity. The IV principal stratification estimator is simple to implement but has had limited use in practice, possibly due to lack of familiarity. Here, we show that the IV principal stratification estimator is a modified per-protocol estimator that should be obtainable from any randomized controlled trial, and we provide a closed form for its robust variance (and its uncertainty). Finally, we illustrate sensitivity analyses we conducted to assess inference in light of potential violations of the exclusion restriction assumption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.