Abstract

The macroscopic creep properties of negative electrodes in lithium-ion batteries and their estimation methods have been investigated based on the microscopic structure of the electrode. Tensile and creep tests were conducted on a negative electrode consisting of carbon powder and polyvinylidene fluoride (PVDF) binder. The stress-strain curve, the time history of the tensile strain, and the creep rupture time were measured in these tests and estimated using the simple model proposed in this study. The proposed model approximates the alignment of carbon particles as body-centered cubic (bcc) or face-centered cubic (fcc). The external load on the model was supported by a PVDF binder located between carbon particles. The test results showed that PVDF binder mechanical properties affect the macroscopic mechanical properties of the negative electrode, including the creep properties. The stress-strain curve and time history of the tensile strain were located between the upper and lower limits of the proposed model. The tensile strength and creep rupture time agree with the lower limit of the proposed model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.