Abstract

A posteriori error estimation is an important tool for reliable and efficient Galerkin boundary element computations. For hypersingular integral equations in 2D with a positive-order Sobolev space, we analyse the mathematical relation between the (h − h/2)-error estimator from [S. Ferraz-Leite and D. Praetorius, Simple a posteriori error estimators for the h-version of the boundary element method, Computing 83 (2008), pp. 135–162], the two-level error estimator from [M. Maischak, P. Mund, and E. Stephan, Adaptive multilevel BEM for acoustic scattering, 585 Comput. Methods Appl. Mech. Eng. 150 (1997), pp. 351–367], and the averaging error estimator from [C. Carstensen and D. Praetorius, Averaging techniques for the a posteriori bem error control for a hypersingular integral equation in two dimensions, SIAM J. Sci. Comput. 29 (2007), pp. 782–810]. All of these a posteriori error estimators are simple in the following sense: first, the numerical analysis can be done within the same mathematical framework, namely localization techniques for the energy norm. Second, there is almost no implementational overhead for the realization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call