Abstract

Standard microphones and ultrasonic devices are generally designed with a static and flat frequency response in order to address multiple acoustic applications. However, they may not be flexible or adaptable enough to deal with some requirements. For instance, when operated in noisy environments such devices may be vulnerable to wideband background noise which will require further signal processing techniques to remove it, generally relying on digital processor units. In this paper, we consider if microphones and ultrasonic devices could be designed to be sensitive only at selected frequencies of interest, whilst also providing flexibility in order to adapt to the different signals of interest and to deal with environmental demands. This research exploits the concept where the “transducer becomes part of the signal processing chain” by exploring feedback processes between mechanical and electrical mechanisms that together can enhance peripheral sound processing. This capability is present within a biological acoustic system, namely in the ears of certain moths. That was used as the model of inspiration for a smart acoustic sensor system which provides dynamic adaptation of its frequency response with amplitude and time dependence according to the input signal of interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.