Abstract

We present results from a new variant of a diffusion hopping model, the convective diffusive lattice model, to describe the behavior of a particulate flux around bluff obstacles. Particle interactions are constrained to an underlying square lattice where particles are subject to excluded volume conditions. In an extension to previous models, we impose a real continuous velocity field upon the lattice such that particles have an associated velocity vector. We use this velocity field to mediate the position update of the particles through the use of a convective update after which particles also undergo diffusion. We demonstrate the emergence of an expected wake behind a square obstacle which increases in size with increasing object size. For larger objects we observe the presence of recirculation zones marked by the presence of symmetric vortices in qualitative agreement with experiment and previous simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.