Abstract

Telomere end-to-end fusions are an important source of chromosomal instability that arise in cells with critically shortened telomeres. We developed a nested real-time quantitative PCR method for telomere fusion detection in pancreatic ductal adenocarcinomas, intraductal papillary mucinous neoplasms (IPMNs), and IPMN cyst fluids. Ninety-one pancreatic cancer cell lines and xenograft samples, 93 IPMNs, and 93 surgically aspirated IPMN cyst fluid samples were analyzed. The association between telomere shortening, telomerase activity, and telomere fusion detection was evaluated. Telomere fusions were detected in 56 of 91 pancreatic cancers (61.5%). Telomere fusion-positive cell lines had significantly shorter telomere lengths than fusion-negative lines (P=0.003). Telomere fusions were undetectable in normal pancreas or IPMNs with low-grade dysplasia (0.0%) and were detected in IPMN with high-grade dysplasia (HGD; 48.0%) (P<0.001). In IPMN cyst fluids, telomere fusions were more frequent in IPMNs with HGD (26.9%) or associated invasive cancer (42.9%) than IPMN with intermediate-grade dysplasia (15.4%) or low-grade dysplasia (0%) (P=0.025). Telomerase activity levels were higher in cyst fluids with fusions than in those without (P=0.0414). Cyst fluid telomere fusion status was an independent predictor of HGD/invasive cancer by multivariate analysis (odds ratio, 6.23; 95% CI, 1.61-28.0). Telomere fusions are detected in later stages of IPMN progression and can serve as a marker for predicting the presence of HGD and/or invasive cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call