Abstract
A simple fluorescence and electrochemical dual-channel biosensor based on bifunctional Zr(IV)-based metal-organic framework (Zr-MOF) was proposed to detect Ochratoxin A (OTA). The bifunctional Zr-MOF, with photoluminescence properties and enormous electroactive ligands, was exploited to load OTA-specific aptamers for designing signal probes, greatly simplifying the probe-fabrication process and improving sensing reliability. Upon specific recognition of aptamer toward OTA, the anchored probe was released from the sensing interface into the reaction solution. In this circumstance, the increased amount of the signal probe in reaction solution led to an enhanced fluorescence response, while the decreased amount of the signal probe on the sensing interface resulted in a diminished electrochemical response. According to the dual-channel signal change with increasing OTA concentration, the visual fluorescence strategy was established for intuitive OTA detection, and meanwhile, sensitive electrochemical assay with a detection limit of 0.024 pg/mL was also achieved with the help of one-step electrodeposition as a sensing platform. Moreover, the proposed dual-channel assay has been successfully applied to determine OTA levels in corn samples with rapid response, superior accuracy, and high anti-interference capability, providing a promising method for food safety monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.