Abstract

The paper presents a feedback route guidance strategy for complex, meshed traffic networks. Essential components of the strategy are simple, decentralized control laws of the bang-bang, P, or PI types that may be designed based on trial-and-error. Simulation investigations demonstrate the efficiency of the proposed strategy for two example networks under several scenarios of demand and incident conditions. Feedback route guidance, though exclusively based on measurable instantaneous travel times (no predictions, no demand nor origin–destination information are provided), is shown to equalize experienced travel times along any couple of used alternative routes in the network, and to considerably reduce travel delays compared to the no-control case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.