Abstract

Molecular motors such as kinesin, myosin, and F1-ATPase are responsible for many important cellular processes. These motor proteins exhibit nanometer-scale, stepwise movements on micro- to millisecond timescales. So far, methods developed to measure these small and fast movements with high spatial and temporal resolution require relatively complicated experimental systems. Here, we describe a simple dark-field imaging system that employs objective-type evanescent illumination to selectively illuminate a thin layer on the coverslip and thus yield images with high signal/noise ratios. Only by substituting the dichroic mirror in conventional objective-type total internal reflection fluorescence microscope with a perforated mirror, were nanometer spatial precision and microsecond temporal resolution simultaneously achieved. This system was applied to the study of the rotary mechanism of F1-ATPase. The fluctuation of a gold nanoparticle attached to the γ-subunit during catalytic dwell and the stepping motion during torque generation were successfully visualized with 9.1-μs temporal resolution. Because of the simple optics, this system will be applicable to various biophysical studies requiring high spatial and temporal resolution in vitro and also in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.