Abstract

The fabrication of microfluidic chips can be simplified and accelerated by three-dimensional (3D) printing. However, all of the current designs of 3D printed microchips require off-chip bulky equipment to operate, which hindered their applications in the point-of-care (POC) setting. In this work, we demonstrate a new class of movable 3D printed microfluidic chip components, including torque-actuated pump and valve, rotary valve, and pushing valve, which can be operated manually without any off-chip bulky equipment such as syringe pump and gas pressure source. By integrating these components, we developed a user-friendly 3D printed chip that can perform general colorimetric assays. Protein quantification was performed on artificial urine samples as a proof-of-concept model with a smartphone used as the imaging platform. The protein was quantified linearly and was within the physiologically relevant range for humans. We believe that the demonstrated components and designs can expand the functionalities and ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.