Abstract
AbstractA family $\{Q_{\beta}\}_{\beta \geq 0}$ of Markov chains is said to exhibit metastable mixing with modes$S_{\beta}^{(1)},\ldots,S_{\beta}^{(k)}$ if its spectral gap (or some other mixing property) is very close to the worst conductance $\min\!\big(\Phi_{\beta}\big(S_{\beta}^{(1)}\big), \ldots, \Phi_{\beta}\big(S_{\beta}^{(k)}\big)\big)$ of its modes for all large values of $\beta$. We give simple sufficient conditions for a family of Markov chains to exhibit metastability in this sense, and verify that these conditions hold for a prototypical Metropolis–Hastings chain targeting a mixture distribution. The existing metastability literature is large, and our present work is aimed at filling the following small gap: finding sufficient conditions for metastability that are easy to verify for typical examples from statistics using well-studied methods, while at the same time giving an asymptotically exact formula for the spectral gap (rather than a bound that can be very far from sharp). Our bounds from this paper are used in a companion paper (O. Mangoubi, N. S. Pillai, and A. Smith, arXiv:1808.03230) to compare the mixing times of the Hamiltonian Monte Carlo algorithm and a random walk algorithm for multimodal target distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.