Abstract

We redesigned contour-clamped homogeneous electric field (CHEF) circuitry to eliminate crossover distortion, to set identical potentials at electrodes of each equipotential pair and to drive pairs with transistors in emitter follower stages. An equipotential pair comprised the two electrodes set at the same potential to provide electric field homogeneity inside of the hexagonal array. The new circuitry consisted of two identical circuits, each having a resistor ladder, diodes and transistors. Both circuits were interconnected by diodes that controlled the current flow to electrodes when the array was energized in the 'A' or 'B' direction of the electric field. The total number of transistors was two-thirds of the total number of electrodes. Average voltage deviation from potentials expected at electrodes to achieve a homogeneous electric field was 0.06 V, whereas 0.44 V was obtained with another circuit that used transistors in push-pull stages. The new voltage clamp unit is cheap, generated homogeneous electric field, and gave reproducible and undistorted DNA band patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call