Abstract

Recently, the danger of a long blackout is discussed in Europe. Blackouts can be caused by failures in the energy distribution, errors in large power plants or even cyber-attacks. This can lead to a chain reaction and a disintegration of the mains. Longer blackouts have an extreme impact on the economy as a whole and on local households. Therefore, a small local grid at home which can supply the most important loads over some time has garnered increasing interest. With a small direct current (DC) grid, critical loads such as for deep freezers and refrigerators can be supplied, and some LED lights can be used in the evening or at night. Solar generators (panels) can be used to charge energy storage devices, e.g., batteries. A DC grid can not only be used in the case of an emergency, but can also be used to reduce energy consumption out of the public mains and reduce energy bills. The architecture of the household emergency DC grid is discussed; suggestions for batteries are given; two simple chargers, based on DC-DC-converters like the Buck (step-down) and on the Boost (step-up) converters, are shown; dimensioning suggestions are given; and simple, robust controllers, a P-controller with disturbance feedforward and a hysteresis controller, are treated and tested via simulations. The goal of the paper is to show a simple autonomous home energy system without an external fieldbus, LAN or internet connection with special focus on simple charger topologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call