Abstract
The lithium-ion battery (LIB) industry has been in high demand for simple and effective methods to improve the electrochemical performance of LIBs. Here, we treated three different widely studied anode electrodes (i.e., Li4Ti5O12, TiO2, and graphite) under vacuum at 250 °C, and compared their electrochemical performance with and without a 250 °C treatment. Without changing the composition of the fabricated electrodes, all of the 250 °C treated electrodes exhibited enhanced specific capacities, and the lithium-ion diffusion was improved in different degrees. By comparing the results of scanning electron microscopy (SEM) and energy-dispersive spectroscopy of the pristine and 250 °C treated electrodes, the 250 °C treatment improved the distribution of a polyvinylidene difluoride (PVDF) binder in the electrodes, resulting in a higher porosity of the 250 °C treated electrodes. The results of X-ray photoelectron spectrometry and SEM of the cycled electrodes confirmed that a uniform distribution of the PVDF binder from the 250 °C treatment played a positive role in the formation of a solid electrolyte interphase layer, thereby delivering higher capacities and capacity retentions than those of electrodes without heat treatment. The simplicity of this modification method provides considerable potential for building high-performance LIBs at a larger scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.