Abstract

We present a three-dimensional cubic lattice spin model, anisotropic in the $\hat{z}$ direction, that exhibits fracton topological order. The latter is a novel type of topological order characterized by the presence of immobile pointlike excitations, named fractons, residing at the corners of an operator with two-dimensional support. As other recent fracton models, ours exhibits a subextensive ground state degeneracy: On an $L_x\times L_y\times L_z$ three-torus, it has a $2^{2L_z}$ topological degeneracy, and an additional non-topological degeneracy equal to $2^{L_xL_y-2}$. The fractons can be combined into composite excitations that move either in a straight line along the $\hat{z}$ direction, or freely in the $xy$ plane at a given height $z$. While our model draws inspiration from the toric code, we demonstrate that it cannot be adiabatically connected to a layered toric code construction. Additionally, we investigate the effects of imposing open boundary conditions on our system. We find zero energy modes on the surfaces perpendicular to either the $\hat{x}$ or $\hat{y}$ directions, and their absence on the surfaces normal to $\hat{z}$. This result can be explained using the properties of the two kinds of composite two-fracton mobile excitations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.