Abstract

We have developed a simple and low-cost optical measurement system for the simultaneous measurement of the five-degrees-of-freedom error motions of high-speed microspindles. We demonstrated the usefulness of the system by using it to measure actual spindle rotation errors, and analyzed the major error factors. First, the measurement error due to the form error of the lens was analyzed by ray tracing. Second, we analyzed the measurement error due to a displacement of an irradiation laser point on a 3 mm diameter ball lens. Furthermore, we investigated the effect of the centrifugal force and the crosstalk problem of multiple laser beams. The results indicated that a form error of the rod lens significantly affected the measurement accuracy and that a change in the laser beam irradiation point of the ball lens due to a radial displacement had no significant effect on the measurement accuracy. Finally, we confirmed that, owing to the centrifugal force, the measurement accuracy decreased as the speed of rotation increased, and that there was no crosstalk that the reflected and transmitted laser beams in the X direction were detected by the photodiode in the Y direction for displacements within −10 to 10 μm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.