Abstract

AbstractIn the present work, we report a simple experimental strategy for the one‐step electrochemical synthesis of nanogranular Cu2O films by copper anodization in fluoride‐containing ethylene glycol media. Microscopic exploration using field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM), shows the formation of spherical shape grains with sizes ranging from 20 to 40 nm. Raman and X‐Ray Photoemission Spectroscopy (XPS) results indicate that only CuI oxide is obtained. A band gap energy Eg=2.01 eV is estimated from UV–vis reflectance spectroscopy indicating that an indirect transition mechanism between semiconductor bands takes place. These evidences indicate that the present synthesis of nanogranular Cu2O films is a promising method for obtaining improved properties of materials for the design of photoelectronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.