Abstract

Herpes simplex virus 1 (HSV-1) is a ubiquitous virus that results in lifelong infections due to its ability to cycle between lytic replication and latency. As an obligate intracellular pathogen, HSV-1 exploits host cellular factors to replicate and aid in its life cycle. HSV-1 expresses infected cell protein 0 (ICP0), an immediate-early regulator, to stimulate the transcription of all classes of viral genes via its E3 ubiquitin ligase activity. Here we report an automated, inexpensive, and rapid high-throughput approach to examine the effects of small molecule compounds on ICP0 transactivator function in cells. Two HSV-1 reporter viruses, KOS6β (wt) and dlx3.1-6β (ICP0-null mutant), were used to monitor ICP0 transactivation activity through the HSV-1 ICP6 promoter:lacz expression cassette. A ≥10-fold difference in β-galactosidase activity was observed in cells infected with KOS6β compared to dlx3.1-6β, demonstrating that ICP0 potently transactivates the ICP6 promoter. We established the robustness and reproducibility with a Z′-factor score of ≥0.69, an important criterium for high-throughput analyses. Approximately 19,000 structurally diverse compounds were screened and 76 potential inhibitors of the HSV-1 transactivator ICP0 were identified. We expect this assay will aid in the discovery of novel inhibitors and tools against HSV-1 ICP0. Using well-annotated compounds could identify potential novel factors and pathways that interact with ICP0 to promote HSV-1 gene expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call