Abstract

This work combines lab-on-paper methodology with nanoparticle science to develop a new tool for the simple and rapid determination of Hg(II). The resulting paper-based device enables measurement of Hg(II) from only 2μL of sample solution. The color of the nanosilver in the test area immediately changes in the presence of Hg(II), and this change can be monitored by the naked eye. This method exhibits superior selectivity towards Hg(II) compared with the other metal ions tested. Furthermore, the results show a significant increase in the Hg(II) analytical signal when Cu(II) is added to the Ag Nanoplates at the test zone. With digital camera imaging and software processing, which are shown to further improve the quantitative capability of this technique, the linear detection range is 5–75ppm Hg(II) with a limit of detection of 0.12ppm. Using a pre-concentration scheme (based on repeated 2μL applications of the test Hg(II) solution onto the same test zone) reduces the limit of detection to 2ppb. The technique developed by this study provides a rapid, sensitive and selective detection method for aqueous Hg(II) samples and is especially suitable for remote field and environmental analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call