Abstract

An efficient multienzyme system for the preparative synthesis of d-xylonate, a chemical with versatile industrial applications, is described. The multienzyme system is based on d-xylose oxidation catalyzed by the xylose dehydrogenase from Calulobacter crescentus and the use of catalytic amounts of NAD+. The cofactor is regenerated in situ by coupling the reduction of acetaldehyde into ethanol catalyzed by alcohol dehydrogenase from Clostridium kluyveri. Excellent conversions (>95%) were obtained in a process that allows easy product isolation by simple evaporation of the volatile buffer and byproducts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call