Abstract
A combination of the microwave power saturation (MPS) method of electron spin resonance (ESR) and spin probing is proposed as a simple and practical technique for detecting the glass transition temperatures, T(g), of polymers with high sensitivity. Effects of the spin-probe size and concentration on the T(g) value of polystyrene (PS) determined by MPS, T(g,ESR), were first evaluated. Spin-probed PS with four types of nitroxides, namely, di-tert-butyl nitroxide (DBN), 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl (BZONO), and 4',4'-dimethyl-spiro(5α-cholestane-3,2'-oxazolidin)-3'-yloxy free radical (CHOL), having molecular weights of 144, 156, 276, and 473, respectively, and spin-labeled PS with TEMPO were prepared. The T(g,ESR) values for the spin-probed PS with DBN, TEMPO, BZONO, and CHOL and spin-labeled PS were determined to 360, 363, 374, 374, and 375 K, respectively, within experimental uncertainties of 2 K, whereas the glass transition temperature determined by DSC, T(g,DSC), was 375 K for all samples. A significant decrease in T(g,ESR) for small spin probes was shown to be due to decoupling between the mobilities of small spin probes and PS segments. Concerning the concentration, a decrease in the saturation factor, S, induced by shortening of the spin-spin relaxation time was observed for the spin-probed PS with CHOL when the concentration of CHOL was more than 1.0 wt %. Furthermore, T(g,ESR) decreased slightly with increasing weight fraction of CHOL because of the "plasticizer effect" of CHOL. However, the T(g,ESR) and T(g,DSC) values corresponded for each concentration. Thus, large spin probes, such as CHOL and BZONO, are appropriate for the determination of T(g,ESR) values; the concentration of the spin probes does not affect the T(g,ESR) value unless the overall T(g) value is reduced by blending of excess spin probes. Finally, measurements of T(g,ESR) in PS/silica composites containing more than 95 wt % silica are shown as an application example of the present method. T(g,ESR) was clearly determined even for the PS/silica composites with 98 wt % silica; a decrease in T(g,ESR) with increasing silica content was observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.