Abstract
This work proposes a new general and simple model to determine the local flow condensation heat transfer coefficient inside plain pipes. The model considers two regimes corresponding to high mass fluxes and/or high thermodynamic qualities and low mass fluxes and/or low thermodynamic qualities. For each region, a new model is suggested which resembles the single-phase heat transfer coefficient model but defining an equivalent Reynolds number in terms of the sum of the superficial liquid and vapour Reynolds numbers. The models consider that the superficial vapour Reynolds number plays a major role in controlling the heat transfer coefficient. The model is able to predict the heat transfer coefficient from channels with a hydraulic diameter of 67 μm up to pipes with a hydraulic diameter of 20 mm for several fluids. No noticeable effect of the diameter of the channel, shape or fluid properties on the heat transfer coefficient has been observed for the studied cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.