Abstract

We consider a one‐dimensional diffusion process X, with ergodic property, with drift b(x, θ) and diffusion coefficient a(x, θ) depending on an unknown parameter θ that may be multidimensional. We are interested in the estimation of θ and dispose, for that purpose, of a discretized trajectory, observed at n equidistant times ti = iΔ, i = 0, ..., n. We study a particular class of estimating functions of the form ∑f(θ, Xti−1) which, under the assumption that the integral of f with respect to the invariant measure is null, provide us with a consistent and asymptotically normal estimator. We determine the choice of f that yields the estimator with minimum asymptotic variance within the class and indicate how to construct explicit estimating functions based on the generator of the diffusion. Finally the theoretical study is completed with simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.