Abstract
Proteins that change their structure in response to light absorption regulate many functional processes in living cells. Moreover, biotechnological approaches like optogenetics and super-resolution fluorescence microscopy recently triggered the generation of new genetically modified photosensitive proteins. Light-induced structural changes in photosensitive proteins can be studied by time-resolved serial femtosecond crystallography (SFX), an X-ray diffraction technique that allows the determination of macromolecular structures at X-ray free-electron lasers from a large number of nano- to micro-sized crystals. This article describes a simple and efficient system for converting photosensitive proteins into light-induced semi-stationary states by inline laser illumination prior to sample injection with a gas-focused liquid jet and subsequent optical pump–X-ray probe exposure. The simple setup of this device makes it suitable for integration into other liquid injectors (like electro-spinning and electro-kinetic injectors) and potentially also in high-viscosity extruders, provided that embedding microcrystals in viscous media does not alter protein photophysical properties. The functioning of the device is demonstrated with an example of a photoswitchable fluorescent protein pre-illuminated (photoactivated) for time-resolved SFX experiments. The device can be easily adapted for the conversion in time-resolved SFX experiments of other microcrystalline proteins, such as photosystems, phytochromes and rhodopsins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.