Abstract

Membrane fouling control in membrane bioreactors (MBRs) can be achieved by improving membrane properties. In this study, corrugated flat sheet polyvinylidenefluoride (PVDF) membranes were fabricated, characterized and tested in a lab-scale MBR for improved filterability and fouling resistance. A simple imprinting step was successfully developed and applied as part of the membrane preparation procedure, via phase inversion, to form corrugations on the membrane surface. The corrugation consisted of valleys-and-hills topography, which increased membrane effective surface area (AE) by ~50%. It also increased the membrane mean pore size (PS) as a result of changes in formation mechanism. Both higher AE and larger PS increased membrane permeability to about 5–6 times compared to the non-corrugated membrane, prepared under similar conditions. Surface corrugations reduced membrane fouling propensity as observed from the flux-stepping test and a lab-scale MBR operation, without affecting permeate quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call