Abstract

A simple and easy shape-controllable approach is demonstrated for the fabrication of parabolic-shaped polymer microlenses (μ-lenses), which are widely used in bio-imaging systems such as microfluidic and lab-on-a-chip systems for improving the image quality due to their ability to efficiently focus light into the devices. The μ-lenses were printed directly on micro-structured polymeric SU-8 mesas and they were formed on these mesas using a photo-curable organic–inorganic hybrid material (H-resist) using a drop-on-demand (DOD) ink-jet printing technique. The parabolic-shape μ-lenses with a fixed diameter resulting from the micro-structured SU-8 mesas are controlled by surface wetting conditions (i.e., the comparison between hydrophobic and hydrophilic) that efficiently improve the boundary confinement effect, and by printing different numbers of drops per μ-lens. The influence of the geometrical changes on the optical properties is also investigated. The high numerical aperture (NA) parabolic-shaped μ-lenses controlled by the hydrophobic surface-treated micro-structured polymeric SU-8 mesas, which are able to confine the drops at the edge, can be integrated on a microfluidic system and they allow high resolution image quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.