Abstract

Circulating tumor cells (CTCs) are tumor cells that originate from primary cancer tissues, enter the bloodstream in the body, and metastasize to the other organs. Simple and convenient methods for their detection, capture, and recovery from the blood of cancer patients would be highly desirable. We report here on a simple and convenient methodology to trap, culture, and re-collect cancer cells, the sizes of which are greater than those of normal hematologic cells, by the use of glass-bead filters (GBFs). We prepared GBFs with a diameter of 24 mm and thicknesses of 0.4 mm and 1.2 mm, with well-defined pores, by sintering round-shaped glass beads (diameter: 63-106 μm). A small integrated glass-bead filter (iGBF) with a diameter of ca. 9.6 mm for the use in filtering a small volume of blood was also designed and prepared. Using GBF and iGBF, it was possible to efficiently capture mouse Lewis lung carcinoma cells expressing green fluorescent protein spiked in saline/blood by single and repeated (circulation) filtrations in in vitro experiments with very small amounts of red blood cells being captured. In addition, we successfully captured B16 CTCs from the blood of a B16 melanoma metastasis mouse model by iGBF. Cancer cells/CTCs captured on/in the GBF could be cultured and efficiently recovered from the filters. Filtration by GBF had negligible effect on the adherent and proliferative characteristics of cancer cells. Simple and convenient methods for the capture, culture, and re-collection of CTCs by GBF along with flexibility of GBF, which permits them to be molded into suitable architectures having the desired shape and size, should be useful for early and convenient diagnosis and treatment of cancer and related diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.