Abstract
A simple and approximate analytical solution is presented by invoking on-surface radiation condition theory for the analysis of electromagnetic scattering by a perfectly conducting object. The scattering object is assumed to be placed in a free space medium and is excited by a time harmonic plane wave having transverse magnetic (TM) polarization. The closed form analytical result for the monostatic as well as bistatic radar cross section is approximate. It is applicable only for the case of a convex conducting object having arbitrary two dimensional cross section with arbitrary edges and corners. Canonical scattering objects, such as a triangular scatterer and a thin strip scatterer, are analyzed for the transverse magnetic excitation to evaluate the usefulness of the analytical results. Numerical data for the monostatic and bistatic radar cross section are presented by comparing them with respect to the numerical solution obtained by solving an electric field integral equation based on the method of moments technique. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.