Abstract

A heat storage tank (HST), described in this paper, may be applied to numerous systems used for thermal energy generation and storage. Working principle and heat-flow processes of the HST remain the same and are independent of the systems in which the HST is being used. This paper presents a thermal-flow analysis of a heat storage tank (HST) operating in an air compressor heat pump (ACHP) and a dry cooler (DC) combined cycle. The HST is operated under transient conditions for four different ACHP steady states. The HST was analysed using lumped capacitance method. The heating power of a single coil varied from 2.2 to 3.2 kW. 50% increase in mass flow rate of heating water in the coils increased the HST water mean temperature by 5.6 °C. A differential equation for the HST water temperature variation was solved analytically and it was presented with the use of dimensionless numbers. The presented solution is of a general form. An important parameter such as number of the coils may be varied easily. Additionally, a Mathcad computational program was proposed for the estimation of HST-ACHP-DC system thermodynamic and thermal-flow parameters. System dynamics was studied using MATLAB/Simulink. An optimal operating parameters of the HST were found and are presented in the paper. The aforementioned parameters are as follows: mass flow rates of heating and cooling media in all three coils, mass flow rate of freshwater supplying the HST, number of loops in coils and resulting heat transfer area, diameter of the loops of the coils, diameter of the coils, time after which water in the HST reaches a steady value, time period within which the HST may fulfil demand for central heating and domestic hot water (DHW) preparation without being charged simultaneously. The presented analytical model was validated based on the available data in the field literature and a high compliance was reached. For this purpose theoretical model results were compared to results of HST computational fluid dynamics (CFD) simulations. The temperature calculated using the presented model differed from the one obtained by the CFD analysis by 2.96 K.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call