Abstract

Abstract We propose a simple test for moment inequalities that has exact size in normal models with known variance and has uniformly asymptotically exact size under asymptotic normality. The test compares the quasi-likelihood ratio statistic to a chi-squared critical value, where the degree of freedom is the rank of the inequalities that are active in finite samples. The test requires no simulation and thus is computationally fast and especially suitable for constructing confidence sets for parameters by test inversion. It uses no tuning parameter for moment selection and yet still adapts to the slackness of the moment inequalities. Furthermore, we show how the test can be easily adapted to inference on subvectors in the common empirical setting of conditional moment inequalities with nuisance parameters entering linearly. User-friendly Matlab code to implement the test is provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.