Abstract

In order to accommodate the predicted increase in screening required of successful pharmaceutical companies, miniaturized, high-speed HTS formats are necessary. Much emphasis has been placed on sensitive fluorescence techniques, but some systems, particularly enzymes interconverting small substrates, are likely to be refractory to such approaches. We show here that simple absorbance-based assays can be miniaturized to 10-microl volumes in 1536-well microplates compatible with the requirements for ultra-high throughput screening. We demonstrate that, with low-cost hardware, assay performance is wholly predictable from the 2-fold decrease in pathlength for fully filled 1536-well plates compared to 96- and 384-well microplates. A number of enzyme systems are shown to work in this high-density format, and the inhibition parameters determined are comparable with those in standard assay formats. We also demonstrate the utility of kinetics measurements in miniaturized format with improvements in assay quality and the ability to extract detailed mechanistic information about inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.