Abstract

Flow induced vibration problem of an in-service duplex stainless steel piping system was investigated in previous research. The investigation required multiple sets of site measurement results at the offshore gas processing platform which raises the concerns of safety and its practicality. A lab scale of the mentioned piping system is preferable to study the flow induced vibration problem at different operating conditions to better understand the dynamic behaviour of this piping system. In addition, most of the dimensional analyses were performed either solely on structure or fluid system. System with flow induced vibration problem has never been attempted and thus it is important to perform similitude study of the piping system prior to fabrication of the lab scale model. Buckingham Pi theorem was applied and the similitude was verified by computational mechanics both qualitatively and quantitatively. The calculated non-dimensional variables of a scaled piping system in describing the flow characteristics which contribute to the structure deformation give similar scale factor, flow pattern and flow induced dynamic deformation and stress in this fluid-structure interacted piping system indicating that geometric, kinematic and dynamics similarity are achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.