Abstract
AbstractIt has been known that different reference structure retrieve different sets of structures. Recent works in similarity searching have suggested that significant improvements in retrieval effectiveness can be achieved by combining results from different reference structures. One of an important characteristic of the Bayesian inference network (BIN) model is that permits the combining of multiple reference structures. In this paper we introduce a formal inference net model to directly combine the contributions of multiple reference structures, and propose a novel approach to the combination of information from various reference structures. The inference net model of similarity, which was designed from this point of view, treats similarity searching as an evidential reasoning process where multiple sources of evidence about target structure are combined to estimate similarity scores. In this paper, we have compared BIN with other similarity searching methods when multiple bioactive reference structures are available. Six different 2D fingerprints were used in combination with data fusion (DF) and nearest neighbor (NN) approaches as search tools and also as descriptors for BIN. Our empirical results show that the BIN consistently outperformed all conventional approaches such as DF and NN, regardless of the fingerprints that were tested. The superiority of BIN over conventional approaches is ascribed to the fact that BIN understands the content of the descriptors of the structures and references and used this understanding to infer the direct relationship between structures and references.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.