Abstract

Computationally predicting drug-target interactions is useful to select possible drug (or target) candidates for further biochemical verification. We focus on machine learning-based approaches, particularly similarity-based methods that use drug and target similarities, which show relationships among drugs and those among targets, respectively. These two similarities represent two emerging concepts, the chemical space and the genomic space. Typically, the methods combine these two types of similarities to generate models for predicting new drug-target interactions. This process is also closely related to a lot of work in pharmacogenomics or chemical biology that attempt to understand the relationships between the chemical and genomic spaces. This background makes the similarity-based approaches attractive and promising. This article reviews the similarity-based machine learning methods for predicting drug-target interactions, which are state-of-the-art and have aroused great interest in bioinformatics. We describe each of these methods briefly, and empirically compare these methods under a uniform experimental setting to explore their advantages and limitations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.