Abstract

We study the rotating Couette flow of conducting power law fluids in the presence of a magnetic field. We analyze the coupled effects of the rheology and the magnetic field on the angular velocity and shear stress distributions for the case when an infinite long cylinder rotates in an unbounded fluid. For shear thickening fluids our exact similarity solutions exhibit traveling wave characteristics determining the existence of a moving shear front. We investigate the electrorheological effect on the propagation of the shear disturbances front.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call