Abstract

We consider the motion of shallow two-dimensional gravity currents of a purely viscous and relatively heavy power-law fluid of flow behavior index n in a uniform saturated porous layer above a horizontal impermeable boundary, driven by the release from a point source of a volume of fluid increasing with time like tα. The equation of motion for power-law fluids in porous media is a modified Darcy’s law taking into account the nonlinearity of the rheological equation. Coupling the flow law with the mass balance equation yields a nonlinear differential problem which admits a self-similar solution describing the shape of the current, which spreads like t(α+n )/(2+n), generalizing earlier results for Newtonian fluids. For the particular values α=0 and 2, closed-form solutions are derived; else, a numerical integration is required; the numerical scheme is tested against the analytical solutions. Two additional analytical approximations, valid for any α, are presented. The space-time development of the gravity current is discussed for different flow behavior indexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.