Abstract

Traditional multi-view feature extraction methods based on manifold learning frequently overlook the similarity sequence between samples, failing to capture the intrinsic manifold structure of raw nonlinear samples and restricting the recognition performance of multi-view learning. In this paper, we propose a novel similarity-sequenced multi-view discriminant feature extraction method, called Similarity -sequenced Multi-view Discriminant Correlation Analysis (SMDCA), which explicitly considers the sample sequences based on similarity. The method constructs similarity-sequenced discriminant scatters for preserving the sequence structure of within-class samples and develops between-class correlations with the similarity-sequence structure information for further constraining intrinsic manifold structure of cross-view samples. SMDCA can also simultaneously extract low-dimensional sequence features with well-discriminative power from multiple views. Extensive experiments exhibit that SMDCA can provide higher recognition accuracy and stronger robustness in image recognition tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.