Abstract

In this paper, by introducing a stream function and new coordinates, we transform classical Euler–Boussinesq equations into a vorticity form. We further construct traveling wave solutions and similarity reduction for the vorticity form of Euler–Boussinesq equations. In fact, our similarity reduction provides a kind of linearization transformation of Euler–Boussinesq equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.