Abstract
A two-layer, first-order closure model for the Planetary Boundary Layer (PBL) is developed with the objective of parameterizing the surface stress with respect to the synoptic scale. The model includes stability effects by considering stratification-dependent secondary flow in the outer layer and empirical corrections to the surface layer flow. It shows the compatibility of simple eddy viscosity closure solutions with similarity theory by producing the now well-known Rossby similarity equations. It allows further insight into the Rossby similarity parameters by relating them to a single similarity parameter which is the ratio of the characteristic scales of the PBL and the surface layer. The measured and derived values of the similarity parameters A and B are compared with AIDJEX data and other published values. The variation in these values in stably stratified conditions is predicted and two alternate similarity parameters are calculated, one a constant and the other with a small variation and decreasing influence on the drag coefficient in stable stratification. The result is an empirical resistance law for a geostrophic drag coefficient variation which parameterizes an observed order-of-magnitude change in surface stress with changes in roughness or PBL stratification. This variation is related to similarity parameters characteristic of the region and to measurable changes in the geostrophic departure angle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.