Abstract

Understanding language requires applying cognitive operations (e.g., memory retrieval, prediction, structure building) that are relevant across many cognitive domains to specialized knowledge structures (e.g., a particular language’s lexicon and syntax). Are these computations carried out by domain-general circuits or by circuits that store domain-specific representations? Recent work has characterized the roles in language comprehension of the language network, which is selective for high-level language processing, and the multiple-demand (MD) network, which has been implicated in executive functions and linked to fluid intelligence and thus is a prime candidate for implementing computations that support information processing across domains. The language network responds robustly to diverse aspects of comprehension, but the MD network shows no sensitivity to linguistic variables. We therefore argue that the MD network does not play a core role in language comprehension and that past findings suggesting the contrary are likely due to methodological artifacts. Although future studies may reveal some aspects of language comprehension that require the MD network, evidence to date suggests that those will not be related to core linguistic processes such as lexical access or composition. The finding that the circuits that store linguistic knowledge carry out computations on those representations aligns with general arguments against the separation of memory and computation in the mind and brain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call