Abstract

Y. Miyazawa introduced a two-variable polynomial invariant of virtual knots in 2006 [Magnetic graphs and an invariant for virtual links, J. Knot Theory Ramifications 15 (2006) 1319–1334] and then generalized it to give a multi-variable one via decorated virtual magnetic graph diagrams in 2008. A. Ishii gave a simple state model for the two-variable Miyazawa polynomial by using pole diagrams in 2008 [A multi-variable polynomial invariant for virtual knots and links, J. Knot Theory Ramifications 17 (2008) 1311–1326]. H. A. Dye and L. H. Kauffman constructed an arrow polynomial of a virtual link in 2009 which is equivalent to the multi-variable Miyazawa polynomial [Virtual crossing number and the arrow polynomial, preprint (2008), arXiv:0810.3858v3, http://front.math.ucdavis.edu .]. We give a bracket model for the multi-variable Miyazawa polynomial via pole diagrams and polar tangles similarly to the Ishii's state model for the two-variable polynomial. By normalizing the bracket polynomial we get the multi-variable Miyazawa polynomial fK ∈ ℤ[A, A-1, K1, K2, …] of a virtual link K. n-similar knots take the same value for any Vassiliev invariant of degree < n. We show that fK1 ≡ fK2 mod (A4 - 1)n if two virtual links K1 and K2 are n-similar. Also we give a necessary condition for a virtual link to be periodic by using n-similarity of virtual tangles and the Miyazawa polynomial.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call