Abstract

This study aims to develop a flexible myoelectric pattern recognition (MPR) method based on one-shot learning, which enables convenient switching across different usage scenarios, thereby reducing the re-training burden. First, a one-shot learning model based on a Siamese neural network was constructed to assess the similarity for any given sample pair. In a new scenario involving a new set of gestural categories and/or a new user, just one sample of each category was required to constitute a support set. This enabled the quick deployment of the classifier suitable for the new scenario, which decided for any unknown query sample by selecting the category whose sample in the support set was quantified to be the most like the query sample. The effectiveness of the proposed method was evaluated by experiments conducting MPR across diverse scenarios. The proposed method achieved high recognition accuracy of over 89% under the cross-scenario conditions, and it significantly outperformed other common one-shot learning methods and conventional MPR methods (p < 0.01). This study demonstrates the feasibility of applying one-shot learning to rapidly deploy myoelectric pattern classifiers in response to scenario change. It provides a valuable way of improving the flexibility of myoelectric interfaces toward intelligent gestural control with extensive applications in medical, industrial, and consumer electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.