Abstract
When unauthorized copying or stealing of intellectual properties of others happen, it is called plagiarism. Two main approaches are used to counter this problem – external plagiarism detection and intrinsic plagiarism detection. External algorithms compare a suspicious file with numerous sources whereas intrinsic algorithms are allowed to solely inspect the suspicious file in order to predict plagiarism. In this work, the area chosen for detecting plagiarism is with programs or source code files. Copying the entire source code or logic used in a particular program without permissions or copyright is the stealing that happens in the case of source codes. There exist many ways to detect plagiarism in source code files. To perform plagiarism checking for a large dataset, the computational cost is very high and moreover it’s a time consuming job. To achieve a computationally efficient similarity detection in source code files, the Hadoop framework is used where parallel computation is possible for large datasets. But the raw data available to us is not in a suitable form for the existing plagiarism checking tools to work with, as their size is too high and they possess features of big data. Thus a qualifying model is required for the dataset, to be fed into Hadoop so that it could efficiently process them to check for plagiarism in source codes. To generate such a model, machine learning is used which incorporates big data with machine learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Recent Technology and Engineering (IJRTE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.