Abstract

Functional magnetic resonance and diffusion weighted imaging have so far made a major contribution to delineation of the brain connectome at the macroscale. While functional connectivity (FC) was shown to be related to structural connectivity (SC) to a certain degree, their spatial overlap is unknown. Even less clear are relations of SC with estimates of connectivity from inter-subject covariance of regional F18-fluorodeoxyglucose uptake (FDGcov) and grey matter volume (GMVcov). Here, we asked to what extent SC underlies three proxy estimates of brain connectivity: FC, FDGcov and GMVcov. Simultaneous PET/MR acquisitions were performed in 56 healthy middle-aged individuals. Similarity between four networks was assessed using Spearman correlation and convergence ratio (CR), a measure of spatial overlap. Spearman correlation coefficient was 0.27 for SC-FC, 0.40 for SC-FDGcov, and 0.15 for SC-GMVcov. Mean CRs were 51% for SC-FC, 48% for SC-FDGcov, and 37% for SC-GMVcov. These results proved to be reproducible and robust against image processing steps. In sum, we found a relevant similarity of SC with FC and FDGcov, while GMVcov consistently showed the weakest similarity. These findings indicate that white matter tracts underlie FDGcov to a similar degree as FC, supporting FDGcov as estimate of functional brain connectivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call