Abstract
The roots of pokeweed ( Phytolacca americana) are known to contain the lectins designated PL-A, PL-B, PL-C, PL-D1, and PL-D2. Of these lectins, the crystal structures of two PLs, the ligand-free PL-C and the complex of PL-D2 with tri- N-acetylchitotriose, have been determined at 1.8 Å resolution. The polypeptide chains of PL-C and PL-D2 form three and two repetitive chitin-binding domains, respectively. In the crystal structure of the PL-D2 complex, one trisaccharide molecule is shared mainly between two neighboring molecules related to each other by a crystallographic 2 1-screw axis, and infinite helical chains of complexed molecules are generated by the sharing of ligand molecules. The crystal structure of PL-C reveals that the molecule is a dimer of two identical subunits, whose polypeptide chains are located in a head-to-tail fashion by a molecular 2-fold axis. Three putative carbohydrate-binding sites in each subunit are located in the dimer interface. The dimerization of PL-C is performed through the hydrophobic interactions between the carbohydrate-binding sites of the opposite domains in the dimer, leading to a distinct dimerization mode from that of wheat-germ agglutinin. Three aromatic residues in each carbohydrate-binding site of PL-C are involved in the dimerization. These residues correspond to the residues that interact mainly with the trisaccharide in the PL-D2 complex and appear to mimic the saccharide residues in the complex. Consequently, the present structure of the PL-C dimer has no room for accommodating carbohydrate. The quaternary structure of PL-C formed through these putative carbohydrate-binding residues may lead to the lack of hemagglutinating activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.